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The non-linear response of a T-shaped beam}mass structure is investigated
theoretically and experimentally for the case of one-to-two internal resonance and
principal parametric resonance of the lower mode. The method of multiple scales is
used to determine four "rst order amplitude- and phase-modulation equations.
The non-trivial steady state solutions are obtained from trivial solutions through
pitchfork bifurcation. The Melnikov's method is used to predict the critical
parameter at which the dynamical system possesses a Smale horseshoe type of
chaos. To verify the analytical results, experiments were performed on the
T-shaped beam}mass structure. The periodically amplitude-modulated motions
and chaotically amplitude-modulated motions were observed during experiments.
The results of the experiment showed good qualitative agreement with the
theoretical predictions.

( 1999 Academic Press
1. INTRODUCTION

Many mechanical structures can be modelled as a two-degree-of-freedom (d.o.f.)
non-linear system subject to parametric excitation. For systems with quadratic
non-linearities, if the natural frequencies are of 1 : 2 internal resonance, energy
exchange takes place between two modes, and complicated motions can occur.
Nayfeh [1, 2] studied the Hopf bifurcation and routes to chaos in the presence of
a two-to-one internal resonance of a parametrically excited two-d.o.f. system with
quadratic non-linearities. Feng and Sethna [3] investigated global bifurcation and
chaos in a parametrically forced system with one}one resonance. Feng and Wiggins
[4] presented the existence of chaos in a class of two-d.o.f., damped, strongly
parametrically forced mechanical systems with broken O(2) symmetry. Banerjee
and Bajaj [5] analyzed amplitude-modulated chaos in two-d.o.f. systems with
quadratic non-linearities under external or parametric excitation.
0022-460X/99/501125#20 $30.00/0 ( 1999 Academic Press
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Although extensive local and global analyses of two-d.o.f. systems with weak
quadratic non-linearities under weak external or parametric excitations have been
carried out, there has been little research on their experimental investigation.
Balachandran and Nayfeh [6] employed an L-shaped beam}mass structure to
conduct experiments, and successfully observed Hopf bifurcation and chaos in
a two-d.o.f. with quadratic non-linearities under external excitation.

The purpose of this study is to theoretically and experimentally investigate the
non-linear response of a parametrically excited two-d.o.f. non-linear system with
quadratic non-linearities under principal parametric resonance to the lower mode.
The method of multiple scales is used to derive four "rst-order ordinary di!erential
equations for the modulation of the amplitudes and phases of two modes, which
control the essential dynamics of the original system for su$ciently small motions
near resonance. As is well known, "xed points of the averaged equations exhibit
periodic solutions of the original system, periodic solutions of the averaged
equations imply periodically amplitude-modulated motions of the original system,
and chaotic solutions of the averaged equations indicate chaotically amplitude-
modulated response for the original system. The Melnikov's method is used to
predict the global bifurcation and chaos in the averaged system. Experiments were
performed under principal parametric resonance of the lower mode. Periodic
motions, periodically amplitude-modulated motions and chaotically
amplitude-modulated motions were observed.

2. ANALYSIS

2.1. EQUATIONS OF MOTION

The model under consideration is shown in Figure 1, which is a T-shaped
beam}mass structure. It consists of two light-weight beams and two concentrated
masses. The response of the structure can be modelled by a two-mode
approximation. If u

1
and u

2
are the generalized co-ordinates of these two modes,

the resulting dimensionless equations of motion are derived by using Hamilton's
principal and Galerkin's method as a two-d.o.f. non-linear system subject to
Figure 1. The two-d.o.f. mechanical structure. Horizontal beam: 1)15 mm]31)75 mm]416)5 mm,
o
1
"0)24258 g/mm, m

1
"166)7 g; vertical beam: 1)08 mm]26)35 mm]200)5 mm, o

2
"0)1585 g/

mm, m
2
"51)35 g.
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parametric excitation [7]
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where the highest order of terms retained are quadratic, e is a small dimensionless
parameter, k

1
and k

2
are the modal damping coe$cients, and f

mn
, X, u

n
, M

mn
and

N
mn

are the constants. The parameters f
mn

and X depend on the excitation, whereas
the parameters u

n
, M

mn
and N

mn
depend on the values of the two masses and the

dimensions and properties of the two beams.

2.2. PERTURBATION ANALYSIS

The method of multiple scales [8] is employed to obtain an approximate solution
of equations (1) in the form
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where ¹
n
"ent. In terms of the ¹

n
, the time derivatives become
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where D
n
"L/L¹

n
.

Substituting equations (2) and (3) into equations (1) and equating coe$cients of like
powers of e to zero yields
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The solutions of equations (4) can be expressed in the complex forms
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where A
n

are undetermined functions of ¹
1

at this level of approximation, and
AM

n
are the complex conjugate of A

n
. They can be determined by imposing the

solvability conditions at the next level of approximation. On substituting equations
(6) into equations (5), the particular solutions of the resulting equations contain
secular terms of the form ¹

0
exp($iu

1
¹
0
) and ¹

0
exp($iu

2
¹
0
) and small-divisor

terms, depending on the resonant conditions. To the "rst order approximation,
these resonant conditions are (a) internal resonance u

2
:2u

1
or u

1
:2u

2
; (b)

principal parametric resonance of the higher mode X:2u
1
; (c) principal

parametric resonance of the lower mode X:2u
2
; and (d) combination parametric

resonances of the additive and di!erence types X:u
2
$u

1
.

In this paper, the principal parametric resonance of the lower mode (X:2u
2
) is

to be treated, in the presence of one-to-two internal resonance (u
1
:2u

2
). To

describe quantitatively the nearness of these resonances, we introduce the detuning
parameters p

1
, p

2
as follows:
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Substituting equations (6) and (7) into equations (5), and eliminating the terms that
produce secular terms in u

11
and u

21
yields the solvability conditions
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indicates the derivative with respect to ¹
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.

In order to solve equations (8), we introduce the polar forms
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where a
i
, u

i
are real functions of time ¹

1
. Substituting equations (9) into equations

(8) and separating the real and imaginary parts of the resulting equations yields the
following set of amplitude- and phase-modulation equations:
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where h
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investigation of the stability of the trivial solutions, it is important to transform
equations (10) into the Cartesian form in order to avoid dividing by a

1
and a

2
. By

using the change of variables
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in equations (10), one can obtain
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Here, we have let c
i
"k

i
for the sake of clearness. The Hamiltonian function

corresponding to the averaged equations (10) without damping can be written as
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where a@
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"!LH/Lh

i
, h@

i
"LH/La

i
, i"1, 2.

2.3. STEADY STATE SOLUTIONS AND BIFURCATION ANALYSIS

The stability and bifurcation of the steady state solutions of equations (1) are
studied in this section. Periodic solutions of equations (1) correspond to the "xed
points of equations (10), which are obtained by setting a@

i
"0 and h@

i
"0, i"1, 2.

There are two possibilities: either trivial solutions
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or non-trivial solutions
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Therefore, to the "rst approximation, the response is trivial or given by
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where a
1

and a
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are de"ned in equations (15a) and (15b) and h
1

and h
2

can be
obtained from equations (15c) and (15d).

Next, one can determine the conditions under which equation (15b) has real
roots. Obviously, it is required that F*0, that is
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In order to study the stability of "xed points of the averaged system (10), we need
to investigate the characteristic equation of the Jacobian matrix of the averaged
equations (12). Firstly, the eigenvalues of the Jacobian matrix for the trivial
solutions (u

i
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i
"0) can be written as
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Since the damping coe$cients c
1
, c

2
are always positive, the trivial solutions are

asymptotically stable when f
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eigenvalue changes its sign from negative to positive. Thus, the trivial solutions lose
their stability through pitchfork bifurcation giving rise to the non-trivial solutions.
Secondly, the characteristic equation of the Jacobian matrix of the averaged
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equations (12) for the non-trivial solutions can be written as
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for all the eigenvalues have negative real parts are
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easy to see that the "rst condition of equation (19) is automatically satis"ed for
positive damping parameters. If r

0
(0, the second condition of equation (19) is

satis"ed, and so equation (18) has real positive roots if and only if r
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implies that the "xed point corresponding to positive sign in equation (15b) is stable
and that corresponding to the negative is unstable. The violation of the second
condition in equation (19) would imply the existence of a pair of complex conjugate
eigenvalues having a positive real part. Hence, replacing the inequality by an
equality yields the parameters corresponding to Hopf bifurcation.

2.4. GLOBAL BIFURCATION: THE MELNIKOV'S METHOD

In order to use the modi"ed version of Melnikov's method as in Wiggins [9], it is
required to transform the averaged equations (10) to his desired form. To achieve
this, we introduce the following canonical transformations to equations (10):
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In order to calculate the Melnikov integral, it is required that we understand the
geometry of the corresponding unperturbed system. The equations of the
corresponding unperturbed system can be derived from equations (21) by letting
e
1
"0, which can be expressed as
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Clearly, p
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"I is a constant solution by the third equation of equation (22). Since
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are proportional to the square of the amplitudes of response [refer to
equations (16)] and p
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is a combination of the actions a
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equations by the de"nitions (20), in some sense I represents the total mechanical
energy of the system. The "rst two equations of equation (22) are independent with
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(b) I(p2
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"p~

1
"

3I#p2
2
!Jp4

2
#6Ip2

2
18

, q
1
"0, (30)

(II) p
1
"p`

1
"

3I#p2
2
#Jp4

2
#6Ip2

2
18

, q
1
"n; (31)

z when p
2
(0, the equilibrium points are

(I) p
1
"p`

1
"

3I#p2
2
#Jp4

2
#6Ip2

2
18

, q
1
"0, (32)

(II) p
1
"p~

1
"

3I#p2
2
!Jp4

2
#6Ip2

2
18

, q
1
"n. (33)

The stability of these equilibrium points is determined by the eigenvalues of the
Jacobian matrix of the (p

1
, q

1
) equations in (22). It is easily deduced by performing

the stability analysis that the equilibrium points corresponding to equations (24)
and (27) are two saddle points, and others are center points. The heteroclinic orbits
through the saddle point (I/2, q*

1
) satis"es

H(p
1
, q

1
)"HA

I
2

, q*
1 B. (34)

We thus obtain the equations for heteroclinic orbits as follows

Orbit A: p
1
"

p2
2

4 cos2 q
1

, (35)

Orbit B: p
1
"1

2
I. (36)

The Melnikov function corresponding to equations (21) (ignoring the damping
terms) can be found in reference [9] as system I

M"P
`=

~=
G p1@2

1
(I!2p

1
) sin q

1
(t)[!2 f cos(2q

2
(t))]!p1@2

1
cos q

1
(t)2 f (I!2p

1
)

]sin(2q
2
(t))H dt#p1@2

1
cos q

1
(t)

((1@2)I, q*1 ) P
`=

~=

2 f (I!2p
1
) sin(2q

2
(t)) dt.

(37)

¹he Melnikov function of orbit A: Substituting equation (35) into the second
equation of equation (22), one can obtain q

1
(t) with initial condition q

1
(0)"n and

q
1
(0)"0 depending on the sign of quantity p

2
.
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If p
2
'0:

q
1
(t)"tan~1

J2I!p2
2

p
2

tanh
J2I!p2

2
2

t. (38)

If p
2
(0:

q
1
(t)"tan~1

J2I!p2
2

p
2

tanh
J2I!p2

2
2

t#n. (39)

One can thus plot the qualitative phase #ow in di!erent regions in the (I, p
2
) space,

which is shown in Figure 2. The qualitative property of the system does not change
under any small perturbation if the parameters lie in the region in (I, p

2
) space.

There only exist center points in region 3, and so chaos does not occur in this
region. We intend to use Melnikov's technique to analyze the behavior of two
heteroclinic orbits A and B under perturbation. In order to calculate the Melnikov
function, we need to have explicit expressions for the heteroclinic orbits.
Expressions for p

1
(t) and q

2
(t) can be obtained from q

1
(t) as

p
1
(t)"

p2
2
4
#

2I!p2
2

4
tanh2 A

J2I!p2
2

2
tB , (40)

q
2
(t)"1

2
(p

2
!p

1
)t#q

20
. (41)
Figure 2. Parameter regimes in (I, p
2
) plane and partial associated phase portraits.
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By using the above equations and letting q
2
(t)"bt#q

20
, the Melnikov integral

corresponding to orbit A can be derived as

M
A
"2 f P

`=

~=

(I!2p
1
)p1@2

1
sin[q

1
(t)#2q

2
(t)] dt!p

2
f

]P
`=

~=

(I!2p
1
) sin[2q

2
(t)] dt. (42)

By using the nature of the even and odd function and the expression in equations
(38)}(41), the Melnikov function can be calculated as

M
$

A
"!8n f b2 sin(2q

0
)cosechA

2nb

J2I!p2
2
B . (43)

Substituting b"1
2
(p

2
!p

1
) into equation (43), one can obtain

M
$

A
"!2n f (p

2
!p

1
)2 sin(2q

0
)cosechA

n (p
2
!p

1
)

J2I!p2
2
B . (44)

It is easy to see that the Melnikov function has a simple zero with respect to
q
20

provided the coe$cient of sin(2q
20

) is not zero, that is p
2
Op

1
and I'1

2
p2
2
. In

this case, the heteroclinic orbit A breaks with transversal intersections under
perturbation, which leads to a Smale horseshoe type of chaos. The second
condition indicates that the energy in the system needs to exceed a certain
minimum value before chaotic motions can occur.

¹he Melnikov function of orbit B : Substituting the equation of orbit B, that is
p
1
"1

2
I into equation (37), we can simply derive:

M$

B
,0. (45)

Thus, one concludes that orbit B does not break under small perturbation.

3. EXPERIMENT

3.1. THE TEST RIG AND MEASURING PROCEDURE

The test rig consists of four components, which are T-shaped beam}mass
structure, excitation system, data acquisition system and signal processing system.
The schematic of the experimental set-up is shown in Figure 3. The mechanical
structure is excited by a PR9270 vibration exciter driven by a power ampli"er. The
excitation signals are generated by a sinusoidal signal wave synthesizer. The
excitation amplitude is held constant (as the excitation frequency is swept) by the
computer-controlled feedback loop. Two accelerometers, with each mounted on
one beam respectively, are used to pick up the vibratory signals of the transverse
displacements of the structure. The signals are monitored on a digital oscilloscope,
recorded by a cassette recorder, and sent to an IBM PC which acquired data
through a 16-bit analog-to-digital converter. A sampling frequency of 376 Hz is
used and 2048 points per team are collected. The acquired data stored in the IBM
PC are directly analyzed by a FFT algorithm.



Figure 3. A sketch of the experimental set-up. Note: accelerometers*1, B&K2635 charge ampli-
"er*2, digital oscilloscope*3, casette recorder*4, Poincare map pulse generator*5.
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The linear resonant frequencies of the structure were determined by using
a random excitation. When ¸

1
"350)7 mm and H

1
"190)3 mm, they were

f
1
"12)69 Hz and f

2
"6)25 Hz. The modal damping coe$cients were found to be

very small by performing parameter-identi"cation studies, and so the linear reson-
ant frequencies should be very close to the linear natural frequencies.

3.2. THE REGIMES OF APPEARANCE OF CHAOTICALLY MODULATED MOTIONS

Figure 4 shows the experimentally obtained variation of the excitation amplitude
with the excitation frequency on which the structure appeared chaotically
amplitude-modulated motions. The linear resonant frequencies of the structure
were f

1
"12)69 Hz and f

2
"6)25 Hz. As is well known, the chaotic motions are

very sensitive to initial conditions. The procedure for determining the curves in
Figure 4 was as follows. We "rst choose an excitation frequency and kept it
constant, then slowly increased excitation amplitude in small increments. At each
step the excitation output by the vibration exciter was held constant by the
computer-controlled feedback loop. We waited and observed the stationary
response of the structure by on-line signal analyses after the transient response fully
died out. Once chaotically amplitude-modulated motion appeared, the excitation
amplitude was noted. This threshold value is of major concern in performing
theoretical analyses and numerical simulations. Then we reduced the excitation



Figure 4. Variation of the excitation amplitude with the excitation frequency for appearance of
chaotically amplitude-modulated motions.

Figure 5. Variation of the excitation amplitude with the lower mode frequency for appearance of
chaotically amplitude-modulated motions.
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amplitude to zero. After the response was fully trivial, we swept the excitation
frequency in small increments to another value, then repeated the above procedure
such that we obtained the critical value in this excitation frequency. Care was taken
to ensure that the small increments were properly placed so that a critical value was
not exceeded. Figure 5 shows the experimentally obtained variation of the
excitation amplitude with the lower natural frequency for appearance of chaotically
amplitude-modulated motions. The higher resonant frequency of the structure and
the excitation frequency were f

1
"12)50 Hz and f"12)51 Hz. According to

de"nition (5), this "gure shows the excitation amplitude against the internal
mistunings (or detunings) p

2
. In some sense, it indicates the total energy in the

system against the internal mistunings. Compared with Figure 2 obtained by
theoretical analysis, it shows good qualitative agreement with the theoretical
predictions.

3.3. PARAMETRIC RESONANCE RESPONSE

In the region of parametric resonance to the lower mode, the periodic motions,
periodically amplitude-modulated motions and chaotically amplitude-modulated
motions were observed as one of the control parameters in the system varied. In
conducting tests, it was easy to vary either the excitation amplitude or the



1138 J.-C. JI E¹ A¸.
excitation frequency. The reason for this procedure was to see the routes to chaos
through parameter changes. The characteristic precursor to chaotically amplitude-
modulated motions was found to be the appearance of periodically
amplitude-modulated motions. Figure 6 shows the time histories of two modes as
the excitation amplitude increased from zero, while the Fourier spectra of the
corresponding response are shown in Figure 7. As the excitation amplitude was
increased from zero, the response remained trivial until a critical value was
exceeded. Increasing the excitation amplitude beyond this value caused periodic
response (see Figure 6(a)). Beyond a certain level of the excitation amplitude, the
periodic motions ceased to exist. We saw periodically amplitude-modulated
Figure 6. Time histories of the higher mode f
1
"12)69 Hz and the lower mode f

2
"6)25 Hz for

excitation frequency f"12)6953 Hz as excitation amplitude increases. Excitation amplitude
(a) 55 mV, (b) 63)5 mV, (c) 70 mV, (d) 77)5 mV, (e) 83 mV.



Figure 6. Continued.
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Figure 7. The Fourier spectra of the corresponding responses shown in Figure 6. Excitation
amplitude (a) 55 mV, (b) 63)5 mV, (c) 70 mV, (d) 77)5 mV, (e) 83 mV.
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motions beyond the excitation amplitude (see Figure 6(b)). The response spectrum
in Figure 7(b) shows discrete spectral lines at f$ndf and 1/2 f$ndf, where
n"0, 1, 2, 3,2 d f is related to the modulation frequency in the corresponding
averaged system, while Enrich [10] called it spontaneous sidebands in analyzing
the rub motions in rotor dynamics. As excitation amplitude increased further, it
was found that there existed a range of excitation amplitudes for periodically
amplitude-modulated motions. Figure 6(c) shows the non-linear response when the
amplitude of excitation signals was 70 mV. From the corresponding frequency
spectra shown in Figures 7(b) and (c), it was easy to see that their modulation
frequencies were di!erent. One can thus conclude that the modulation frequencies
are di!erent as the control parameter varies. As the excitation amplitude increased
further beyond another critical value, the periodically amplitude-modulated
motions disappeared. We observed chaotically amplitude-modulated motions (see
Figure 6(d)). The spectrum in Figure 7(d) shows a broadband character around the
excitation frequency, indicating that the motion was chaotic at this frequency. As
excitation amplitude increased to 83 mV, the response of structure is shown in
Figure 6(e). It is obviously chaotically amplitude-modulated motions. In Figure 8,
a representative Poincare map is shown for f

1
"12)5 Hz, f

2
"6)05 Hz, f"12)69 Hz

and excitation amplitude is 97 mV. The Poincare map is plotted on the amplitude
of the higher mode and that of the lower mode plane.

During experiments, we occasionally observed the alternate appearance of
periodically modulated motions and chaotically modulated motions. When the
system parameters and excitation parameters were "xed as constant, we noted that
the periodically modulated motions and chaotically modulated motions appeared
alternately. We ran for a long time after we thought the response of structure was
stationary. This scenery was repeated in a range of excitation amplitudes. The
results are shown in Figure 9.

3.4. DEPENDENCE ON INITIAL CONDITIONS

For a system with multiple steady-state solutions, the possible solution is
determined by the initial condition. In fact, many dynamic problems are sensitive to
initial conditions. During the experiment, we gradually increased the excitation
amplitude, and let the system settle to steady responses at a certain value, then
Figure 8. Poincare map on the u
1
}u

2
plane.
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suddenly decreased the excitation amplitude to another value, and kept it unvaried.
We observed the system settling to a qualitatively di!erent behavior. The motions
may change into periodically or chaotically amplitude-modulated motions, while
the previous motions at the same excitation amplitude were periodic. In some cases,
the response changed into chaotically amplitude-modulated motions, whereas the
previous motions at the same excitation amplitude were periodically
amplitude-modulated motions. These observations indicated that the system
settled to a di!erent attractor depending on the starting conditions. For
Figure 9. The alternation of periodically and chaotically amplitude-modulated motions for the
resonant frequency of higher mode f

1
"12)5 Hz, the resonant frequency of the lower mode

f
2
"6)05 Hz and excitation frequency f"12)69 Hz at the "xed excitation amplitude. Excitation

amplitude (a) 77)3 mV, (b) 77)3 mV.



Figure 9. Continued.
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a non-linear mechanical system, multiple attractors are common, and indeed there
may be periodic and chaotic attractors coexisting, for example. The appropriate
operation condition is of crucial importance, because the motion is very sensitive to
initial conditions.

4. CONCLUSIONS

The local and global bifurcation of a two-d.o.f. non-linear system with quadratic
non-linearities is theoretically investigated, in case of a one-to-two internal
resonance and a principal parametric excitation of the lower mode. The method of
multiple scales is used to derive four "rst-order autonomous ordinary di!erential
equations for the modulation of the amplitudes and phases. The steady state
solutions of the modulated equations and their stability are investigated. The trivial
solutions lose their stability through pitchfork bifurcation giving rise to non-trivial
solutions. The Melnikov's method is employed to detect the parameter values at
which the averaged system exhibits complicated dynamics. Finally, in order to
observe amplitude-modulated motions of the structure, experiments are conducted.
The experimental observations may o!er better understanding of the amplitude-
modulated motions to the physical phenomenon. The experimental results are in
good qualitative agreement with theoretical predictions.
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